DRAFT

Variance Estimation for Spatially Balanced Samples
of Environmental Resour ces

Don L. Stevens, Jr.
Statistics Department
Oregon State University
Corvallis, Oregon 97331-4501

Anthony R. Olsen
U. S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35" Street
Corvallis, Oregon 97333

To be submitted to
Environmetrics

The research described in this article has been funded by the U.S. Environmental Protection Agency. This document
has been prepared at the EPA National Health and Environmental Effects Research Laboratory, Western Ecology
Division, in Corvallis, Oregon, through Contract 68-C6-0005 to Dynamac International, Inc,. and Cooperative
Agreement CR82-9096-01 to Oregon State University, It has not been subjected to the Agency's review and
therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. This
document isa preliminary draft. Itisbeing circulated for comments on its technical merit. Do not release. Do not
guote or cite

Local Variance Estimator 1



Variance Estimation for Spatially Balanced Samples of Environmental Resour ces

Don L. Stevens, J.* and Anthony R. Olsen’
!Dynamac Corporation, Corvallis, OR
2US EPA NHEERL Western Ecology Division, Corvallis, OR

Abstract

The spatial distribution of anatural resource isan important consideration in designing an efficient
survey or monitoring program for the resource. We review a unified strategy for designing
probability samplesof discrete, finite resource popul ations, such aslakeswithin some geographical
region; linear populations, such as a stream network in a drainage basin; and continuous, two-
dimensional populations, such asforests. The strategy can be viewed as a generalization of spatial
stratification. In this paper, we develop a local neighborhood variance estimator based on that
perspective, and examine its behavior via smulation. The ssmulations indicate that the local
neighborhood estimate is unbiased and stable. The Horvitz-Thompson RS variance estimate may be
two times the magnitude of the local neighborhood estimate. An example using data from a
generalized random-tessellation stratified design on the Oahe Reservoir resulted in local variance
estimates being 22 to 58 percent smaller than Horvitz-Thompson IRSvariance estimates. Variables
with stronger spatial patterns had greater reductionsin variance, as expected.

1. Introduction

Environmental studiesinvariably involve populations distributed over space. Traditionally, such
studies tended to focus on relatively small and well-delimited systems. However, some of the
environmental issues that we face today, such as globa warming, long-range transport of
atmospheric pollutants, or habitat alteration, are not localized. Understanding and quantifying the
extent of symptoms of wide-spread concerns requires|arge-scale study efforts, which in turn needs
environmental sampling techniques and methodology that are formulated to address regional,
continental, and global environmental issues. Stehman and Overton (1994) give an overview of
some statistical issues associated with environmental sampling and monitoring, and Gilbert (1987)
has an extensive discussion of sampling methods for monitoring environmental pollution.

One of the more prominent features of many environmental populationsis the arrangement of the
population unitsthroughout space. Nearby unitsinteract with one another, and tend to beinfluenced
by the same set of natural and anthropogenic factors. For example, neighboring trees in a forest
interact by competing for energy and nutrients, and are influenced by the same set of physical and
meteorological conditions, the same level of air- or water-borne pollutants, and the same set of
landscape disturbances. Sampling designs that capitalize on this spatial aspect of environmental
populations tend to be more efficient than simple random sampling.

There are severa basic paradigms for incorporating the spatial aspect of an environmental

population into a sample. Area sampling partitions the domain of the population into polygons,
which can be treated either as strata, or as population units themselves. Systematic sampling
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(Cochran, 1946; Cochran, 1977; Madow, 1949) using aregular grid is often applied, as are severa
variants that perturb the strict alignment (Olea, 1984). Along the same lines, Munholland and
Borkowski (1996) have used a L atin square with asingle additional independent sampleto achievea
gpatially balanced sample. Breidt (1995) used aMarkov processto generate aone-unit-per-stratum
spatialy distributed sample. A third approach isto use spaceto order alist frame of the population,
then usethe order of thelist to structure the sample, say by defining strata as successive segments of
the ordered list, or by systematic random sampling. For example, Saalfeld (1991) drew on graph
theory to define atree that leads to a spatially articulated list frame, and the National Agricultural
Statistics Service has used serpentine strips (Cotter and Nealon, 1987) to order their primary sample
units within astate. A related idea that originated in geography is the General Balanced Ternary
(GBT) spatia addressing scheme (Gibson and Lucas, 1982). The concept behind aGBT addressis
similar to the concept of space-filling curves, such asfirst constructed by Peano(1890), or the Hilbert
curve (Simmons, 1963). Wolter and Harter (1990) have used a construction similar to Peano’ sto
construct a“Peano key” to maintain the spatial dispersion of asample asthe underlying popul ation
experiences births or deaths. Saalfeld (1992) has also used the Peano key to maintain spatial
dispersion of asample.

We have synthesized several of these conceptsto create avery powerful and flexible technique for
selecting a spatially-well-distributed probability sample. The technique is based on creating a
function that maps 2-dimensional space into 1-dimensional space, thereby defining an ordered
gpatial address. We require that the function be quadrant-recursive (Mark, 1990), that is, that the
image of any subquadrant be an interval. The quadrant-recursive property ensures that some 2-
dimensional proximity relationships are preserved under the function. A restricted randomization,
called hierarchical randomization (HR), isused to randomly order the spatial addresses. Systematic
sampling along the randomly ordered address sequence is analogous to sampling a random
tessellation of 2-dimensional space, and resultsin aspatially well-balanced random sample. Wecall
the resulting design a Generalized Random Tessellation Stratified (GRTS) design. Details of the
design arediscussed in Stevens (1997), Stevensand Ol sen (2000), and Stevensand Olsen (inreview,
2002). Inthisnote, we provide an abbreviated description of the design, note some of it properties,
and develop avariance estimator thisis easily computable, approximately unbiased, and stable.

2. Generalized Random Tessellation Stratified Design

The GRTS design is developed as if we were selecting points in a continuous, two-dimensional
target population. However, it works equally well for obtaining a spatially-well-distributed sample
of afinite population consisting of discrete unitswith known spatial locationsor alinear, continuous
population embedded in 2-space, e.g., astream network. In thesetwo cases, let the domain be a 2-
dimensional region containing the population. The hierarchically-randomized, quadrant-recursive
functionin the design application assignsarandom addressto every one of the (uncountably infinite)
pointsin the domain. Thus, every unit in the finite population will be assigned a random address,
which can be used to induce a random order of the population. Similarly, every point in alinear
network will be mapped onto arandom point, in effect stringing the point of the network out onto a
linein random order. In all three cases, systematic sampling aong the random order will result in
the corresponding sample units or points being well-distributed over the population domain.
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Stevens (1997) derived inclusion and joint inclusion functions for several grid-based designs that
were precursors to GRTS designs, and share some of their properties. The designs are all
generalizations of the Random Tessellation Stratified (RTS) design (Overton and Stehman (1993),
Olea (1984), Dalenius et al. (1961)). The RTS design selects random points in space via a 2-step
process. First, a regular tessellation coherent with a regular grid is randomly located over the
domain to be sampled, and second, arandom point is selected within each random tessel lation cell.
The RTS design is a variation on a systematic design that avoids the alignment problems that can
occur with acompletely regular systematic design. Like a systematic design, an RTS design does
not alow variable probability spatial sampling. Stevens (1997) introduced the Multiple-Density,
Nested, Random-Tessellation Stratified (MD-NRTS) design to providefor variable spatial sampling
intensity. The geometric concept underlying the MD-NRTS was the notion of coherent
intensification of agrid: adding pointsto aregular grid in such away asto result in adenser regular
grid with similarly-shaped but smaller tessellation cells.

We can view a gquadrant-recursive function as being defined by the limit of successive
intensifications of agrid covering the unit square, where agrid cell isdivided into 4 sub-cells, each
of whichis subsequently divided into 4 sub-sub-cells, and so on. If wewereto carry thisrecursion
to the limit, and pair grid points with addresses based on the order in which the divisions were
carried out, with each digit of the address representing a step in the subdivision, then we obtain a
guadrant-recursive function. For example, suppose we begin with apoint at (1, 1), and replace it
with 4 points po = (1/2, 1/2), p1= (1/2,1), p2 = (1, /2), and p3 = (1, 1). The next step of the
recursion replaces each of the four pointsp, ..., pswith{pi - { (1, 1), (0,1), (1,0), (0,0) }/2%. Thus
the point p; = (1/2, 1) isreplaced with the 4 points pio = (1/4, 3/4), pu. = (14, 1), p12 = (1/2, 3/4),
and p13 = (1/2, 1). Figure 1(a) showsthefirst 4 points (larger dots), and the successor pointsto p;
(smaller dots). In general, the n" step replaces each of the 4" points Py, Wwith

{ Py, - {0D),(0.9,(1,0),(0,0)}/2™"}.

A spatially-referenced address can be constructed following the pattern of the partitioning, with each
new partition adding a digit position to the address. Thus, in the above example, the first group of
four points are assigned the addresses "0", "1", "2", and "3", with "3" being the original point at
(1,1). The successor pointsto "2" get the addresses "20", "21", "22", and "23", and so forth. If
subquadrants are associated with the point in their upper-right corner, then the addresses induce a
linear ordering of the sub-quadrants. Moreover, if we carry the process to the limit, and treat the
resulting address as digits in a base-4 fraction, e.g., “20131...” asthe base 4 number (0.20131...),,
then the correspondence between grid point and address is a quadrant-recursive function.

Figure 1(b) showsthefirst 4 levels of the quadrant-recursive partitioning of the unit square with the
associated addresses. Thus, for example, the address of the cross-hatched subquadrant is, asabase 4
fraction, (0.320)4. If we were to carry the recursive-partitioning to the limit, every point in the
subquadrant would be assigned an address beginning with (0.320),, and so would be in theinterval
(0.320, 0.321)4 = (56/64, 57/64)19
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Theline connecting subquadrantsin Figure 1(b) followsthe same pattern within every subquadrant,
that is, the subquadrants are linked together in the order lower left, upper left, lower right, upper
right. A permutation of that order would still yield a quadrant-recursive function; however, the
resulting addressing sequence would be different. Infact, adifferent permutation could be chosen
for every partition of every subquadrant and the resulting mapping would still be quadrant recursive.
If the permutations are chosen at random and independently from the set of all possible
permutations, we call the resulting random address sequence a hierarchical randomization of the
original sequence obtained using the order lower left, upper left, lower right, upper right within
every subquadrant. If the processiscarried to thelimit, theresultisa1-1, onto, quadrant-recursive,
hierarchically-randomized function f that maps the unit square to the unit interval.

The next step in the sample selection isto induce ameasure on the unit interval corresponding to the
inclusion probability function on the population domain. Sincefis1-1and onto, f *iswell-defined
(in fact, both f and f * are measurable functions). We define the induced measure by assigning to
each interval of theform (0, X] the total of theinclusion probability of the set B(x) = f (0, x]). In
the case of afinite population, thetotal is just the sum of the inclusion probabilities of all unitsin
B(x), i.e., é pi,»wherep; istheinclusion probability for population unit y; . If the populationis
uil B(X)
an infinite continuum, e.g., a linear or 2-dimensional extensive resource, then the total is
O (9)df (), wherep (s) istheinclusion density and f (s) isameasure such that f (B(x)) givesthe
B()
amount (length or area) of the resource in B(x). In any case, we can define a distribution function
F(X) so that F(x) is the total inclusion probability over B(x). We have then that F(0) = 0 and
F(1) = M = expected sample size.

A systematic sample with arandom start and unit selection interval will, on the average, locate M
pointsintheinterval (0, M]. Because F isincreasing, F™* mapsthe sel ected points onto pointsin the
unit interval. We then usef™ to map the pointsin the unit interval back to the population domain,
thereby defining the sample. A schematic of the process is given in Figure 2. Because of the
recursive construction of f, systematic sampling along the randomly ordered spatial address is
analogousto sampling arandom tessel lation of 2-dimensional space, and resultsinaspatially well-
balanced random sample. The construction of the functionsf and F ensuresthat (1) the samplewill
be well-distributed over the popul ation domain, and (2) will have the desired inclusion probability.
Details of the sampling method and the construction of f, f X, F, and F* are given in Stevens and
Olsen (in review, 2002).

3. Estimation

The basic theoretical tool for population estimation using complex, variable probability sampling
designsisthe Horvitz-Thompson Theorem (Horvitz and Thompson, 1952), which is stated herein
its continuous form (Cordy, 1993):
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(Continuous Horvitz-Thompson Theorem): Let s, S, ..., S, be asample selected from auniverse U
according to adesign with inclusion function p(s) and joint inclusion function p(s, t), with p(s) > 0
amost everywhereonU. Let R U, and let z(s) be areal-valued integrable function defined on R.
An unbiased estimator of (yz(s) ds= z; isgiven by

R

o = o Ir(s)Zs)
91 P(si) ,

with variance (Horvitz and Thompson, 1952)

5 y= 2209 yoy aEP(SH- PP (HU
Vir(2r) %9 > e S O

or, equivaently (Y ates and Grundy, 1953),

Vyel 21)= = o:{p (P O- psb) ez(s)é F;(S) Z(Ito) '(S(t)g dtds

g ) z(tdt ds,

Corresponding estimators of variance are

o z(s.) o (s,s))- IO(S.)IO(S,)
Valz=a ) ;'."R:".‘Rep(s.,s,)p(s.)p(s,) d

As)«s;)

and

2
" uez Z2(si)l i)u
Goe(31)= a € (s)p(sj)- P(sis;)U € (s)lr(s) «sj) R(s,)l,J _
%% & P(ssj) ge P(s) P(s;)) @
Both variance estimators are unbiased, provided p(s, t) > 0 amost everywhere in U.

The spatially-bal anced designs obtained by the composition of random grid placement, hierarchical
randomization of a quadrant-recursive address, and systematic sampling have spatial distribution
propertiesthat are very similar to asimple RTS design at the same spatial resolution. Thishasbeen
established by extensive simulation with a variety of populations.

Let C beapolygon congruent to the tessellation cells, let C(0) bethe cell enclosing the (hon-random)
origin, and C(s) be C(0) translated to the point s, that is, C(s)= {t [t-sl C(O)} . Following Stevens
(1997), the inclusion functions for the RTS design are

1 _1
IC(s)| [C|
and
|C(s)C C(t)|U

1-
p(st)=p(shp (t) Cl
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where |C| denotes the area of C. The GRTS design has joint inclusion functions that are non-zero
almost everywhere, and we have accurate, easily-computable approximations for them, so that, in
theory, the Horvitz-Thompson (HT) and Y ates-Grundy (Y G) estimators are applicable for variance
estimation. However, in practice, the caseisnot so straightforward. The HT variance estimator has
an unfortunate tendency to yield negative estimates. The Y G estimator is guaranteed to be positive
for the GRTS design, but tends to be unstable. The difficulty stems from the fact that the joint
inclusion density appears in the denominator of the estimators. Like the RTS design, the GRTS
design guarantees that p(s, t) > 0for st t, but p(s,t) ® 0ass® t. Our experience has shown that
most applications of the GRTS design with amodest number (30+) of sample pointsresultin oneor
more point pairs with small values of p(s, t). The corresponding terms in the variance estimators
tend to be large in absolute value and to dominate the value of the estimators, leading to their
unstable behavior. Thisseemsto be aproblem especially for variable probability sasmpleswherethe
inclusion density is discontinuous, since then the values of z(3/p(® can be substantially different
even for nearby points. Since many of the designs we envision will have discontinuous inclusion
densities (e.g., at regional boundaries, or stream confluences), the HT and Y G variance estimators
are unsuitable.

A stable variance estimator can be obtained by treating the sample as if it arose from independent
random sampling (IRS), where the n points are sel ected independently from an arbitrary density f(s)
over U. This results in an estimator analogous to the “simplified” estimator given by Sarndal,
Swensen, and Wretman (1992), pp 421-423, or the pps-wr estimator vy, given by Wolter (1985),
p.287. For an IRS design, theinclusion density isp(s) = nf(s), and the pairwiseinclusion density is
pPirs(S, t) = n(n-1)f(s)f(t) = (n-1) p(s)p(t)/n. We know the true inclusion density for our design, and
we obtain an approximate variance by replacing the true pairwise inclusion density with the IRS
expression. When we do that, the HT variance estimator for 7, reducesto

S sy @s)6_ 1 as) O%s,) 9. _n_g &) ooz 0

Vil Z7)= Q —a ; o = (p)
T e (s)s 15.S,|Rep(s.)gep(s,)g 18 80s) S
where Vso(Z/p) isthe usual estimator of the population variance for asimple random sample ( SRS)
design applied to z(s)/p(s) .

The IRS estimator accounts for the non-constant inclusion density, but does not account for the
gpatially constrained nature of the GRTS design. |If the response has some spatial pattern, at least to
the extent that the responsesfor two points close together tend to be more similar than the responses
at two pointsfar apart, then the GRTS design will lead to more precise estimates than independent
random sampling with the same inclusion function. Thus, the IRS estimator will be conservative,
i.e., it will tend to overstate the variance.

Severa authors (Y ates, 1949; Wolter, 1985; Overton and Stehman, 1993) have considered aclass of
estimators based on contrasts. The general form of these estimatorsis

Ve (Z1) =8 WY,
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wherey;isacontrast of theform y, = § ¢, z(s,) with § ¢, =0. For an RTSdesign, Overton and
k k

Stehman also considered a “ smoothed” contrast-based estimator of the form
Vao(Zr) =@ W(z - 2)*,

where Z , called the “smoothed value® for data point z, is taken as aweighted mean of a point

plusits nearest neighbors in the tessellation. Thus, for points near the edges of the population,
fewer neighbors are used in calculating Z .

The variance estimator we are proposing here is a contrast-based estimator that bears some
resemblance to the Overton and Stehman smoothed estimator. We replace the single contrast

(z - Z)? with an average of severa contrasts over data from a local neighborhood that is the
construct in the GRTS design analogous to atessellation cell and its nearest neighborsin the RTS

design. Some of the justification for this approach is the observation that the selection from unit
intervals on the line corresponds to selection from arandom tessellation of the popul ation domain,
i.e., arandom stratification. If welet B denote the random event that determines the stratification,
then the GRTS design, conditional on B, is a 1-sample-per-stratum spatially-stratified sample.
Recall that 7,= § 25

s RPUS )

within strata are conditionally independent of one another, E[2T|B]=ZT so that

, where z(s) isasample from thei"™ random stratum. Sincethe selections

- - IS A= (s
V(1)= EIV(Z,] B+ VEL 2,1 B1)= E[V(2,] B)] = aEeVg (S’|Bﬂ We form  the
siR € ( A
neighborhood variance estimator by approximating E eV gﬁ | By, by averaging several contrasts

over alocal neighborhood D(s).

The choice of aneighborhood is motivated by thefollowing considerations. For aGRTSdesign, the
joint inclusion function p(s,t) is well-approximated by a function of the form
p(st)=p(Pp®){1-h(st)} where h(s,t) has the properties: h(s t)=h(t, s), h(s =1,
O£h(st)£1,h(s,s+2aS)® Oas|as| increases, andh(s,s+as)=0for |aS| greater than some constant.
Stevens (1997) has shown this analytically for several variations on the basic RTS design, and we
have investigated more complex applications via simulation. For s T R, let D(s) be the
neighborhood of swhereh(s, t) ispositive, i.e., let D(s)={tT R|h(s,t)> 0} . Fortoutsideof D(s), the
pairwiseinclusion density factors: p(s, t) = p(s)p(t), anindependence-like condition, so that D(s) can
be thought of as a neighborhood of influence for a sample point a s. It follows that
p(s,t)-p(s)p(t):o,t'l' D(s). Applying this relation in the YG variance gives

VYG (Z ) =— 0 O[p (S)p (t) P (S t)] eZ(S)I (S) Z(t)| (t) U

g dtds, thatis, only point pairs(s, t), with
U D(s) ( ) p (t) U

Local Variance Estimator 8



tT D(s), contribute to the variance. Thus, neighborhoods corresponding to the D(s) are a natural
choice on which to base alocal estimate of variance.

In an equi-probable RTS design, the neighborhoods D(s) are easy to determine. If the RTSisbased
on atessellation with cells congruent to a polygon C, then D(s) isapolygon similar to C but with 4
timesthe area. Moreover, in this case, the expected number of sample points falling in D(s) is 4.
For the GRTS design, the case is not so straightforward. For example, a non-constant inclusion
probability density distortsthe shape of the D(s). Even so, the expected number of samplesfallingin
D(s) istill 4. We use this characteristic to define the local neighborhoods used in the estimator.

The neighborhoods D(s) are developed by initially including the point s itself plus the next 3
nearest neighborsfor each point. Thus, the minimum number of pointsin any D(s) is4. Including
more pointstendsto increasethelocal variance, sincethe varianceisintegrated over alarger portion
of the population. Including fewer pointstendsto increasethe variability of thelocal estimate. The
neighborhoods are then adjusted by adding to D(s) any points§ such that 5,1 D( s;). Thisensures

thats;T D(s)U sl D(s;), reflecting therequirement that h(s, t) = h(t, s). Theneighborhood total

zZ(s;
iscalculated as Z,(s) = a W, p((—sl) The weights w; are selected using the following criteria:
;1 D(s) i

1. Theweight w;; should vary inversely as p(s;) and decrease asthe distance between s and 5
increases.

2.3 w, =4 w, =1, so that the neighborhood totals are averages over the neighborhoods,
j

and the sum of the neighborhood totalsis equal to the estimated overall total.

The weights are developed by first assigning a value that decreases as the rank of the distance
between s and s among the points in D(s) increases and is inversely proportional to p(s). The
formulafor thisfirst stepis

. _ 1-(rank(s;)-1)/count(D(s))
! p (Sj)
For example, if D(s,) contained 5 points, the points would be ranked 1 through 5 in order of their

distance from s;. Of course, s; receivesrank 1, sinceit isthe closest point to itself. The other 4
points would be ranked in terms of increasing distance from s;. If al of the points have the same

(1-(4-1)/5)_ 25
p p

inclusion density, say p(s; )° p ,then the point with rank 4 would get weight
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Theweightsare normalized to satisfy each column total constraint by setting i ; = éw— There
Wik

sl D(s)

IS no unique way to satisfy both constraintsin criterion (2), so we select the set of weights w;; that

mini mizeé(wi,- - Wi j ) while satisfying criteria (2). We solve this constrained minimization
ivj

problem using Lagrange multipliers. The unconstrained minimization is then

mn & W - W)’ +al,@Qw-)+ag@w-9
k j | i

Wil .g

The w;; are easily eliminated from the set of linear equations obtained by setting derivativesto 0.
The resulting set of equationsin % and 7 are singular, and we use the M oore-Penrose generalized
inverse (Rao and Mitra, 1971) to solvefor |”, and §,. The minimizing set of weightsis

IS
2

Wi j VV| it

The neighborhood-based variance estimator is then

2
o) aZ(S) > 0 o) o] ( ) o] Z(Sk)o
(Z,)= . T = W W :
NBH glelaD.(g) lg ( ) D(s)g gaT.stTaD.(g) Jgp(s) sKIaD.(s) kp(SK)g

We note that, by the using the symmetry of h(s, t), the estimator can be re-written as
&z(s;) &

VANBH(ZAT):é. é. ”g (s )__D(s)_

s;T Rs1 D(s;) 1]

_ aez(s, 0
Because of the constraint § w; =1, theterm  § w, =s) Zy() + Can be regarded asthe
i s D(s)) gp (S' g
average of severa estimates of variance, each taking the mean over a somewhat different region
corresponding to adifferent random tessellation. Thus, we interpret the term

.2 a
aez(s, 0 NV
a (s) as an approximation to EeV (S‘)|B+a

§ID(S) ”gp( s) D(S)B g ér(s)) @

The use of alocal neighborhood and decreasing weights as a function of distance from a point is
similar to approaches used in geostatistics (Cressie 1991). In kriging, variance estimates at a point
are based on the variogram, which is a function of the distance between points, and is usually
estimated from the data. The estimation processis devel oped assuming a stochastic processfor the
generation of the data. It is natural to use properties of that stochastic process to develop the
variance estimator. Inour case, thelocal neighborhood variance estimation processis devel oped to
incorporate properties of the survey design.
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4. Simulation Study

We have verified the performance of the estimator on avariety of real and constructed populations.
Here we show results for afinite, alinear, and an extensive population. The finite and extensive
populations are artificial; they were constructed to have features that seemed to cause the HR and
Y G variance estimators to be particularly unstable. The linear population consists of real stream
traces from the upper portion of a watershed. The designs in each case incorporate variable
probability.

For the three popul ation types, we assigned popul ation response values by picking (X, y) coordinates,
and associating a z value by interpolating on a surface. This procedure ensured some degree of
gpatial association in the responses. We used two different surfaces (a “smooth” and a “rough”
surface), shown in Figure 3, to define the response values. The surfacesthemselveswere defined by
specifying values at a 101x101 matrix of xy-coordinates, and using the interpolation algorithm to
specify the response at arbitrary coordinates.

Finite Population Simulation Results

We generated afinite population consisting of 1000 units. Thelocations of the unitswere picked to
achieve a population with wide variation in spatial density; to have voids; and to have areas of
densely packed population elements. Figure 4 showsthe spatial pattern of the finite population used
inthesimulations. Variable probability wasintroduced by assigning, at random, 750 unitsarelative
weight of 1, 200 units aweight of 2, and 50 units aweight of 4.

We selected 1000 samples of size 50 from the population using the GRTSdesign. For each sample,
we calculated the estimate of Zr, and the IRS and NBH estimators of variance. We estimated the
true variance by the variance of the 1000 estimates of Zr. We calculated confidence interval
coverage using normal theory confidence intervals, and the known total of the response.

Figure 5 shows a histogram of the 1000 estimates of the NBH variance of Zt using response surface
1, the smoother surface. A vertica bar is drawn at the location of the true variance. Confidence
interval coverages are also displayed in the figure. The estimator is approximately centered on the
truevalue, although it appearsto be biased dightly high. The confidenceinterval coveragesare aso
dlightly high, but close to nominal. Sincethe variance holdslittleintrinsic interest, other than asa
meansto cal cul ate confidence, the agreement of the coverage with the nominal isimportant. Figure
6 showsthe same 1000 samplesasin Figure 5, but with response valuesfrom Surface 2. Theresults
are very similar to the first case, with the roughness of the surface reflected in higher variance
estimates. Theresultsfor both surfacesare summarizedin Table 1. Notethat the estimator based on
the IRS approximation istoo large by afactor of about 2; furthermore, it is also more variable than
the neighborhood-based estimator.
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Surfa:e V]_OOO VA NBH SD\; NBH VA IRS SD\7|R’S

1 10472 12768 3526 21678 5632

2 27325 27899 8367 53513 15197

Table 1. Summary statistics for 1000 samples from afinite population. V 1000 iSthe variance of the
1000 estimates of the total;\/ ., andy/ .. are the mean of the neighborhood- and IRS-based

estimators, respectively. The columns headed “SD” are the standard deviations of the variance
estimators.

Linear Population Simulation Results

We used the stream traces from areal stream network to test the estimator on alinear population.
We assigned weights by Strahler order, using a weight function equal to the stream order. This
weighting scheme is similar to one often used by the U.S. Environmental Protection Agency’s
Environmental Monitoring and Assessment Program (EMAP). Stream networkstend to have much
of their total length in smaller, lower-order reaches, e.g., in the headwater reaches. Placing greater
weight on the higher-order reaches puts more sample points in the streams that are more likely to
contain fish. The test population is shown in Figure 6. The results, shown in Figure 7, are very
similar to the results to the finite popul ation cases: the estimator was approximately unbiased, and
confidence interval coverage was near nominal.

Extensive Population Simulation Results

The final test population was an artificial extensive population, which consisted of an irregular
region split into two unequal -sized subregions. Inthis case, variable probability wasintroduced by
specifying the sample sizesrequired in each region, with the larger sample specified for the smaller
region. Thisimplicitly defines the inclusion density function, constant over subregion, with the
relativeintensity of Region 2to Region 1 equal to 2.66. Thetest populationisdisplayedinFigure8,
with a histogram of the results for Surface 1 in Figure 9. The results for Surface 2 were quite
similar.

The behavior of the NBH estimator is compared to the IRS estimator in Figure 10, where the
histograms of each estimator are shown, drawn to thesamescale. Asfor thefinite population case,
the IRS estimator isbiased high, by afactor of about 2. Also, the NBH estimator is more stable than
the IRS estimator, consistent with the finite popul ation results

5. Example Application: Sampling the Oahe Reservoir on the Missouri River

The USEPA is completing a research study to develop ecological indicators for large rivers and
associated reservoirs. As part of this study, we developed a generalized MD-NRTS survey design
for the Oahe Reservoir on the Missouri River. The Oahe reservoir is 1,287.5 km? in area and
approximately 325 kmin length extending from North Dakotato South Dakota. An extensiveframe
development effort was used to delineate the reservoir boundaries. The National Elevation Database
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(NED) was used to create reservoir polygons. Polygons were edited and attributed using available
navigation charts, topographic maps, and local knowledge. Insufficient bathymetry data were
available to create an explicit depth criteria but a variety of sources were used to eliminate upland
extents of some baysto avoid probable dry, inaccessible or otherwise non-target areas. The shoreline
is defined as the 510 m MSL contour 20 m above the normal pool elevation (490 m). The many
bayson thereservoir were of particular interest, so they wereindividually delineated and categorized
as small (0.5 to 1.45 km?), medium (1.45 to 3.32 km?), and large (3.32 to 8.0 km?) bays. The
remainder of the reservoir was designated as open water. The desired number of sampleswas12in
each bay category and 15 in open water, for atotal sample size of 51. The areas were 22.17 km?,
50.56 km?, 289.49 km?, and 925.27 km? for small, medium, large, and open water, respectively.

We defined ageneralized MD-NRT S survey design with four multi-density categoriesbased on bays
and openwater. Inaddition to the desired sample size of 51 sites, an over sample of another 51 sites
were included for atotal sample size of 102. After applying reverse hierarchical ordering, the base
sampleof 51 siteswastaken from every other sample point on the ordered line, with the over sample
being the remaining 51 sites. Initial weights (inverse of the inclusion probability) were 1.85, 4.24,
23.81, and 61.90 km? for small, medium, large, and open water, respectively. While conducting
fieldwork, four sites were found not to be in the reservoir target population due to frame
inadequacies. The siteswerereplaced by thefirst four siteson the over samplelist, for atotal of 55
sitesincluded in the final sample of 4 non-target, 34 bay and 17 open water sites. We adjusted the
weights to account for the use of the four over sample sites. Simple ratios of frame area to sum of
weights within open water and all bays were applied to the initial weights. As expected, all non-
target sites were located in bays |eading to the use of these two ratios.

Three variables measured at each location were chlorophyll-a, water temperature at 2m, and secchi
depth (awater transparency measure). Table 2 givesthe estimated population means, IRSHorvitz-
Thompson variance estimates, and local variance estimates. Thelocal variance estimate rangesfrom
—22.5% to 58.1% reduction compared to the IRS variance estimate. Figure 11 displays the
geographic spatia pattern for the observed data. In each case definite spatial patterns exist in the
data. The local variance estimator takes advantage of the pattern, resulting in significantly lower
variance estimates.

Estimated V irs V ner Percent
Mean Reduction
Chlorophyll-a (ng/l) 2.83 0.192 0.081 -58.1
Temperature (°C) 23.37 0.077 0.035 -55.0
Secchi depth (m) 2.61 0.121 0.073 -22.5

Table 2. Lake Oahe population Estimates from GRTS design. /., andy/ . are the mean of the

neighborhood- and IRS-based estimators, respectively. Percent reduction iscompared to |RS-based
variance estimate.
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6. Discussion

The neighborhood-based variance estimator performed quite well on al the test cases simulated.
The estimator is approximately unbiased, and most importantly, the confidenceinterval coverageis
very closeto nominal. Thedistribution of the estimator tendsto be somewhat skewed to theright, as
isto be expected for a variance estimator, but does appear to be stable.

Although we have not explored the possibility, we expect that the estimator would also work very
well for arandomly placed systematic design, or, indeed, for any design with an element of spatial
balance, e.g., Breidt’ s(1995) Markov-chain design.. The estimator draws on the smoothness of the
local response surface; if the response has no spatial structure, then each local estimate of the total
estimates the overall total, and thus, each local variance estimates the overall variance. Because of
the constraints on the weighting function, the NBH variance estimator can be viewed as an average
of several estimates of the same quantity. If, however, thelocal smoothnessvaries, then thiswill be
reflected in higher variance estimates.
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Figure5. Histogram showing results of 1000 GRTS samples of size 50 from finite population using
Surface 1.
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Figure 5. Histogram showing results of 1000 GRTS samples of size 50 from finite
population using Surface 2.

Local Variance Estimator 22



/(\

¢\

Weight 1 segments

Weight 3 segments

Weight 2 segrments

Figure 6. Linear network used in simulation study.

Weight 4 segrments  e——

Local Variance Estimator 23



140

120

“drioneses ol 1000 Eofireates —

100
1

P ki | D Coweirigs F iy = 952

B - P i | GRS Coremrge F g oy = S0

Frmuecy

1 2 2 4
Exdranied Voviancs of Toll

Figure 7. Histogram of estimated variance for 1000 GRTS samples of size 50 from a linear
population.

Local Variance Estimator 24



|

7

i

.

o

7

N
NIy

§_, SANN \\

SRR

R

N i
ATk

7

"

Fanmnll
g

7

Region 1 Region 2
Area =0.320 Area=0.180
Sample Size = 20 Sample Size =30

Relative Weight = 2.66

Figure 8. Two subregionsof extensive population used in simulation study, showing their areasand
sample sizes.

Local Variance Estimator 25



2 Variane e of 1000 Estimates —
- Nerminal 95% Coverage Frequency = 95.9
g -
g 8
g Nominal 80% Coverage Frequency = §2.4
i

g

T T T T T 1
05 10 15 20 25 30

Estimated Variarce of Total

Figure 9. Histogram showing results of 1000 GRTS samples of size 50 from extensive population
using Surface 1.

Local Variance Estimator 26



200
200

Neighborhood Estimator IRS Estimator
B B
= =
2 2
g g
g g
i w
o o
g &
=3 =
T T T T r T T T
o 1 2 ] 4 5 o 1 2 ] 4 5
Estimated Variance of Total Estimated Variance of Total
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Figure 11. Spatial geographic pattern of relative magnitudesfor chlorophyll, temperature, and secchi
depth in Oahe Reservair.
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